tokio\macros/join.rs
1macro_rules! doc {
2 ($join:item) => {
3 /// Waits on multiple concurrent branches, returning when **all** branches
4 /// complete.
5 ///
6 /// The `join!` macro must be used inside of async functions, closures, and
7 /// blocks.
8 ///
9 /// The `join!` macro takes a list of async expressions and evaluates them
10 /// concurrently on the same task. Each async expression evaluates to a future
11 /// and the futures from each expression are multiplexed on the current task.
12 ///
13 /// When working with async expressions returning `Result`, `join!` will wait
14 /// for **all** branches complete regardless if any complete with `Err`. Use
15 /// [`try_join!`] to return early when `Err` is encountered.
16 ///
17 /// [`try_join!`]: crate::try_join
18 ///
19 /// # Notes
20 ///
21 /// The supplied futures are stored inline and do not require allocating a
22 /// `Vec`.
23 ///
24 /// ## Runtime characteristics
25 ///
26 /// By running all async expressions on the current task, the expressions are
27 /// able to run **concurrently** but not in **parallel**. This means all
28 /// expressions are run on the same thread and if one branch blocks the thread,
29 /// all other expressions will be unable to continue. If parallelism is
30 /// required, spawn each async expression using [`tokio::spawn`] and pass the
31 /// join handle to `join!`.
32 ///
33 /// [`tokio::spawn`]: crate::spawn
34 ///
35 /// ## Fairness
36 ///
37 /// By default, `join!`'s generated future rotates which contained
38 /// future is polled first whenever it is woken.
39 ///
40 /// This behavior can be overridden by adding `biased;` to the beginning of the
41 /// macro usage. See the examples for details. This will cause `join` to poll
42 /// the futures in the order they appear from top to bottom.
43 ///
44 /// You may want this if your futures may interact in a way where known polling order is significant.
45 ///
46 /// But there is an important caveat to this mode. It becomes your responsibility
47 /// to ensure that the polling order of your futures is fair. If for example you
48 /// are joining a stream and a shutdown future, and the stream has a
49 /// huge volume of messages that takes a long time to finish processing per poll, you should
50 /// place the shutdown future earlier in the `join!` list to ensure that it is
51 /// always polled, and will not be delayed due to the stream future taking a long time to return
52 /// `Poll::Pending`.
53 ///
54 /// # Examples
55 ///
56 /// Basic join with two branches
57 ///
58 /// ```
59 /// async fn do_stuff_async() {
60 /// // async work
61 /// }
62 ///
63 /// async fn more_async_work() {
64 /// // more here
65 /// }
66 ///
67 /// # #[tokio::main(flavor = "current_thread")]
68 /// # async fn main() {
69 /// let (first, second) = tokio::join!(
70 /// do_stuff_async(),
71 /// more_async_work());
72 ///
73 /// // do something with the values
74 /// # }
75 /// ```
76 ///
77 /// Using the `biased;` mode to control polling order.
78 ///
79 /// ```
80 /// # #[cfg(not(target_family = "wasm"))]
81 /// # {
82 /// async fn do_stuff_async() {
83 /// // async work
84 /// }
85 ///
86 /// async fn more_async_work() {
87 /// // more here
88 /// }
89 ///
90 /// # #[tokio::main(flavor = "current_thread")]
91 /// # async fn main() {
92 /// let (first, second) = tokio::join!(
93 /// biased;
94 /// do_stuff_async(),
95 /// more_async_work()
96 /// );
97 ///
98 /// // do something with the values
99 /// # }
100 /// # }
101 /// ```
102
103 #[macro_export]
104 #[cfg_attr(docsrs, doc(cfg(feature = "macros")))]
105 $join
106 };
107}
108
109#[cfg(doc)]
110doc! {macro_rules! join {
111 ($(biased;)? $($future:expr),*) => { unimplemented!() }
112}}
113
114#[cfg(not(doc))]
115doc! {macro_rules! join {
116 (@ {
117 // Type of rotator that controls which inner future to start with
118 // when polling our output future.
119 rotator_select=$rotator_select:ty;
120
121 // One `_` for each branch in the `join!` macro. This is not used once
122 // normalization is complete.
123 ( $($count:tt)* )
124
125 // The expression `0+1+1+ ... +1` equal to the number of branches.
126 ( $($total:tt)* )
127
128 // Normalized join! branches
129 $( ( $($skip:tt)* ) $e:expr, )*
130
131 }) => {{
132 use $crate::macros::support::{maybe_done, poll_fn, Future, Pin, RotatorSelect};
133 use $crate::macros::support::Poll::{Ready, Pending};
134
135 // Safety: nothing must be moved out of `futures`. This is to satisfy
136 // the requirement of `Pin::new_unchecked` called below.
137 //
138 // We can't use the `pin!` macro for this because `futures` is a tuple
139 // and the standard library provides no way to pin-project to the fields
140 // of a tuple.
141 let mut futures = ( $( maybe_done($e), )* );
142
143 // This assignment makes sure that the `poll_fn` closure only has a
144 // reference to the futures, instead of taking ownership of them. This
145 // mitigates the issue described in
146 // <https://internals.rust-lang.org/t/surprising-soundness-trouble-around-pollfn/17484>
147 let mut futures = &mut futures;
148
149 // Each time the future created by poll_fn is polled, if not using biased mode,
150 // a different future is polled first to ensure every future passed to join!
151 // can make progress even if one of the futures consumes the whole budget.
152 let mut rotator = <$rotator_select as RotatorSelect>::Rotator::<{$($total)*}>::default();
153
154 poll_fn(move |cx| {
155 const COUNT: u32 = $($total)*;
156
157 let mut is_pending = false;
158 let mut to_run = COUNT;
159
160 // The number of futures that will be skipped in the first loop iteration.
161 let mut skip = rotator.num_skip();
162
163 // This loop runs twice and the first `skip` futures
164 // are not polled in the first iteration.
165 loop {
166 $(
167 if skip == 0 {
168 if to_run == 0 {
169 // Every future has been polled
170 break;
171 }
172 to_run -= 1;
173
174 // Extract the future for this branch from the tuple.
175 let ( $($skip,)* fut, .. ) = &mut *futures;
176
177 // Safety: future is stored on the stack above
178 // and never moved.
179 let mut fut = unsafe { Pin::new_unchecked(fut) };
180
181 // Try polling
182 if fut.poll(cx).is_pending() {
183 is_pending = true;
184 }
185 } else {
186 // Future skipped, one less future to skip in the next iteration
187 skip -= 1;
188 }
189 )*
190 }
191
192 if is_pending {
193 Pending
194 } else {
195 Ready(($({
196 // Extract the future for this branch from the tuple.
197 let ( $($skip,)* fut, .. ) = &mut futures;
198
199 // Safety: future is stored on the stack above
200 // and never moved.
201 let mut fut = unsafe { Pin::new_unchecked(fut) };
202
203 fut.take_output().expect("expected completed future")
204 },)*))
205 }
206 }).await
207 }};
208
209 // ===== Normalize =====
210
211 (@ { rotator_select=$rotator_select:ty; ( $($s:tt)* ) ( $($n:tt)* ) $($t:tt)* } $e:expr, $($r:tt)* ) => {
212 $crate::join!(@{ rotator_select=$rotator_select; ($($s)* _) ($($n)* + 1) $($t)* ($($s)*) $e, } $($r)*)
213 };
214
215 // ===== Entry point =====
216 ( biased; $($e:expr),+ $(,)?) => {
217 $crate::join!(@{ rotator_select=$crate::macros::support::SelectBiased; () (0) } $($e,)*)
218 };
219
220 ( $($e:expr),+ $(,)?) => {
221 $crate::join!(@{ rotator_select=$crate::macros::support::SelectNormal; () (0) } $($e,)*)
222 };
223
224 (biased;) => { async {}.await };
225
226 () => { async {}.await }
227}}
228
229/// Helper trait to select which type of `Rotator` to use.
230// We need this to allow specifying a const generic without
231// colliding with caller const names due to macro hygiene.
232pub trait RotatorSelect {
233 type Rotator<const COUNT: u32>: Default;
234}
235
236/// Marker type indicating that the starting branch should
237/// rotate each poll.
238#[derive(Debug)]
239pub struct SelectNormal;
240/// Marker type indicating that the starting branch should
241/// be the first declared branch each poll.
242#[derive(Debug)]
243pub struct SelectBiased;
244
245impl RotatorSelect for SelectNormal {
246 type Rotator<const COUNT: u32> = Rotator<COUNT>;
247}
248
249impl RotatorSelect for SelectBiased {
250 type Rotator<const COUNT: u32> = BiasedRotator;
251}
252
253/// Rotates by one each [`Self::num_skip`] call up to COUNT - 1.
254#[derive(Default, Debug)]
255pub struct Rotator<const COUNT: u32> {
256 next: u32,
257}
258
259impl<const COUNT: u32> Rotator<COUNT> {
260 /// Rotates by one each [`Self::num_skip`] call up to COUNT - 1
261 #[inline]
262 pub fn num_skip(&mut self) -> u32 {
263 let num_skip = self.next;
264 self.next += 1;
265 if self.next == COUNT {
266 self.next = 0;
267 }
268 num_skip
269 }
270}
271
272/// [`Self::num_skip`] always returns 0.
273#[derive(Default, Debug)]
274pub struct BiasedRotator {}
275
276impl BiasedRotator {
277 /// Always returns 0.
278 #[inline]
279 pub fn num_skip(&mut self) -> u32 {
280 0
281 }
282}